Researchers break new ground in nanotechnology
Warning: Illegal string offset 'status_txt' in /home/customer/www/printelectronicnews.com/public_html/wp-content/plugins/share-and-follow/share-and-follow.php on line 1995
Warning: Illegal string offset 'status_txt' in /home/customer/www/printelectronicnews.com/public_html/wp-content/plugins/share-and-follow/share-and-follow.php on line 1995
Warning: Illegal string offset 'status_txt' in /home/customer/www/printelectronicnews.com/public_html/wp-content/plugins/share-and-follow/share-and-follow.php on line 1995
Warning: Illegal string offset 'status_txt' in /home/customer/www/printelectronicnews.com/public_html/wp-content/plugins/share-and-follow/share-and-follow.php on line 1995
Warning: Illegal string offset 'status_txt' in /home/customer/www/printelectronicnews.com/public_html/wp-content/plugins/share-and-follow/share-and-follow.php on line 1995
Warning: Illegal string offset 'status_txt' in /home/customer/www/printelectronicnews.com/public_html/wp-content/plugins/share-and-follow/share-and-follow.php on line 2007
Warning: Illegal string offset 'status_txt' in /home/customer/www/printelectronicnews.com/public_html/wp-content/plugins/share-and-follow/share-and-follow.php on line 2024
CSIRO in Australia, Palo Alto Research Center in the USA, Sunchon National University in South Korea and Toppan Forms in Japan are among those developing printed organic transistors and photovoltaics. A pioneering study by researchers of The Hong Kong Polytechnic University (PolyU) has shown that sandwiching a simple layer of silver nanoparticles can significantly improve the performance of organic transistors which are commonly used in consumer electronics. This breakthrough is expected to cut down the cost of memory devices such as touchscreens and e-books and improve their performance, they say.
Organic transistorsemploy organic semiconducting compounds in these electronic components. Similar organic inks are a key part of other electronic devices such as some touchscreens. Computer displays enabled by organic transistors are bright with vivid colours. They also provide fast response time and are easy to read in most ambient lighting conditions. With the appropriate use of nanotechnology, the performance of organic transistors can be further improved and their size can be made thinner. The novel method developed by PolyU researchers is much more compatible with the low-cost, continuous roll-to-roll fabrication techniques used to make organic electronics.
More importantly, Dr Chan and his co-researchers have shown that the thickness of the nanoparticle layer changes memory device performance in a more predictable way and thereby optimizing transistor performance to meet applicational requirements. Organic transistors made with a 1-nanometer nanoparticle layer have stable memory which lasts for three hours, making it suitable for memory buffers. And transistors with a 5-nanometer-thick layer can retain their charge for a much longer time.
PolyU researchers anticipate a very high potential for the use of organic memory in next-generation memory devices because of its flexibility and relatively low cost. Already, Konarka has commercialised flexible organic photovoltaics in solar bags that charge mobile phones.
The research is led by Dr Paddy Chan Kwok-leung, Assistant Professor of the Department of Mechanical Engineering, and Dr Leung Chi-wah, Assistant Professor of the Department of Applied Physics, with postdoctoral research fellow Dr Sumei Wang as one of the key members.
Source: Hong Kong Polytechnic University